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ABSTRACT 

In this paper, we establish integral inequalities of Hermite-Hadamard type involving 

Riemann-Liouville fractional integrals for  -convex functions and some new 

inequalities of right-hand side of Hermite-Hadamard type are given for functions 

whose first derivatives absolute values  -convex functions via Riemann-Liouville 

fractional integrals. 
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1. INTRODUCTION 

The function :[ , ]f a b    is said to be convex if the following 

inequality holds: 

( (1 ) ) ( ) (1 ) ( )f x y f x f y         

for all  , [ , ]x y a b   and   0,1 .   We say that  f   is concave if  ( )f   is 

convex. 

 

The inequalities discovered by C. Hermite and J. Hadamard for 

convex functions are very important in the literature (see Pecaric, 1992 and  
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Dragomir, 2000). These inequalities state that if  :f I    is a convex 

function on the interval I of real numbers and Iba ,  with ba  , then  

 
   1

( ) .
2 2

b

a

f a f ba b
f f x dx

b a

 
  

 
   (1) 

 

Both inequalities hold in the reversed direction if  f  is concave. We note 

that Hadamard's inequality may be regarded as a refinement of the concept of 

convexity and it follows easily from Jensen's inequality. Hadamard's 

inequality for convex functions has received renewed attention in recent 

years and a remarkable variety of refinements and generalizations have been 

found (see, for example, Azpeitia, 1994, Dragomir, 1998; 2000 and the 

references cited therein. 

 

In Dragomir, 1998, Dragomir and Agarwal proved the following results 

connected with the right part of (1). 

 

Lemma 1.  Let  RR If :   be a differentiable mapping on  
I ,  

Iba ,   with  ba   . If ],[ baLf  , then the following equality holds:  
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   (2) 

 

Theorem 1.  Let  RR If :   be a differentiable mapping on  
I , 

Iba ,   with  ba   . If  f    is convex on  ],[ ba  , then the following 

inequality holds:  
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   (3) 

 

Meanwhile, Sarikaya et al., 2013 presented the following important integral 

identity including the first-order derivative of  f   to establish many 

interesting Hermite-Hadamard type inequalities for convexity functions via 

Riemann-Liouville fractional integrals of the order  .0   
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Lemma 2. Let    Rbaf ,:   be a differentiable mapping on  ),( ba   

with  .ba    If   ,,baLf    then the following equality for fractional 

integrals holds:  
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  (4) 

 

It is remarkable that Sarikaya et al., 2013 first give the following interesting 

integral inequalities of Hermite-Hadamard type involving Riemann-Liouville 

fractional integrals. 

 

Theorem 2. Let    Rbaf ,:   be a positive function with  ba 0   

and   .,1 baLf    If  f   is a convex function on  ],[ ba  , then the following 

inequalities for fractional integrals hold:  
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  (5) 

 

with  .0   
 

In the following we will give some necessary definitions and mathematical 

preliminaries of fractional calculus theory which are used further in this 

paper. More details, one can consult (Gorenflo, 1997, Miller, 1993). 

 

Definition 1. Let  ].,[1 baLf    The Riemann-Liouville integrals  fJ a


   

and  fJb




  of order  0   with  0a   are defined by 
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respectively. Here, )( is the Gamma function and  

).()()( 00 xfxfJxfJ ba     

 

For some recent results connected with fractional integral inequalities see 

(Belarbi and Dahmani, 2009, Dahmani (2010; (2010-1(1)); (2010-1(2)); 

(2010-2(3)), Sarikaya, 2012, Tunc, 2013). 

 

In Youness, 1999, have defined the    -convex function as follows:  

 

Definition 2. Let     .,,: baba  R   A function    Rbaf ,:   is 

said to be    convex on   ba,   if, for every   bayx ,,    and   1,0  , 

the following inequality holds:  

 

              1 1 .f x y f x f y          

  
 

 

Obviously, if    xx  , then the classical convexity is obtained from the 

previous definition. 

 

In Sarikaya et. al., 2014 gave the following important inequalities for   -

convex mappings :  
 

Theorem 3.  Let  J   be an interval  Jba ,   with  ba    and  

R: J   a continuous increasing function. Let  RR: If   be a  

 -convex function on   ,,baI    then we have 
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bfaf
xdxf
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f
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  )6(   

 

In this paper, by using   -convex mappings, we give Hermite-Hadamard's 

inequalities for Riemann-Liouville fractional integral and some other integral 

inequalities using the identity is obtained for fractional integrals. 
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2. MAIN RESULTS  

Hermite-Hadamard's inequalities can be represented in fractional 

integral forms as follows: 

 

Theorem 4. Let J be an interval Jba ,   with  ba   and  R: J   a 

continuous increasing function. Let RR: If   be a   -convex 

function on  ,,baI    then the following inequalities for fractional integrals 

hold:  
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      (7) 

 

with  .0   

 

Proof. Since f is a  -convex function on ],,[ ba  we have for  

)](),([)(),( bayx     with  
1

2
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  (8) 

 

i.e., with       ,)1( btatx           ,)1( btaty    
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Multiplying both sides of (9)  by  
1t  , then integrating the resulting 

inequality with respest to  t  over  ]1,0[  , we obtain 
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and 

        ).()()1()1( btfaftbtatf    

 

By adding these inequalities we have 
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Then multiplying both sides of (10) by
1t and integrating the resulting 

inequality with respest to t  over  ]1,0[  , we obtain 
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i.e. 
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The proof is completed.  

 

Remark.  If in Theorem 4, we let 1,  then the inequalities (7) become the  

inequalities (6) of Theorem 3. 

 

To prove our main results, we need the following lemma:  
 

Lemma 3.  Let  J  be an interval ,a b J with 0 a b   and  : RJ   a 

continuous increasing function. Let  : R Rf I     be a differantiable 

function on  
I (the interior I ).If   )(),(1 baLf    for  ( ), ( ) ,a b I  

then the following equality holds: 
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where  0.   
 

Proof. It suffices to note that  
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Integrating by parts  
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Using (13) and (14) in (12), it follows that  
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Thus, by multiplying the both sides by  
   

2

b a 
 , we have the conclusion 

(11). 

 

Remark. If we take  xx )(   in Lemma 3, then the inedentity (11) reduces 

to the identity (4). 
 

By using this Lemma, we can obtain the following fractional integral 

inequality: 

 

Theorem 5. Let  J   be an interval  ,a b J   with  0 a b    and  

: RJ   a continuous increasing function. Let  : R Rf I     be a 

differantiable function on  
I (the interior  I ) and   1 ( ), ( )f L a b    for  

( ), ( ) .a b I    If  
q

f    is the   - convex on   , ,a b  1,q   then the 

following inequaliy holds:  
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where  .0   
 

Proof. Firstly, we suppose that  1q  . Using Lemma 3 and   -convexity of   

,
q

f   we find that  
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Using (17) and (18) in (16), it follows that 
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Secondly, we suppose that  1.q  Using Lemma 3 and power mean 

inequality, we obtain 
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Hence, using    -convexity of  
q

f    and (19) we obtain 
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which completes the proof. 

 

Theorem 6. Let  J   be an interval  ,a b J   with  0 a b    and  

: RJ   a continuous increasing function. Let : R Rf I    be a 

differantiable function on 
I (the interior I ) and  1 ( ), ( )f L a b   for 

( ), ( ) .a b I    If
q

f   is the   - convex on   , ,a b 1,q   then the following 

inequaliy holds:  
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where  0    and  .111 
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Proof. Using Lemma 3,    -convexity of  
q

f   and well-known Hölder's 

inequality, we obtain  
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Here, we use  ( )p p pA B A B     for any  0A B    and  1.p    

 

Theorem 7.  Let  J   be an interval  ,a b J   with  0 a b    and  

: RJ   a continuous increasing function. Let  : R Rf I     be a 

differantiable function on  I  (the interior I ) and   1 ( ), ( )f L a b    for  

( ), ( ) .a b I    If  
q

f       - convex on   ,a b   for same fixed  1,q   then 

the following inequality for fractional integrals holds: 
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where  0.    

 

Proof. Using Lemma 3,    -convexity of  ,
q

f    and well-known Hölder's  

inequality, we have 
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Here, we use  ( ) ,p p pA B A B     for any  0A B    and  1.q   
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3. CONCLUSION 

In this paper, we have presented a Hermite-Hadamard’s inequalities 

for  -convex functions via fractional integrals. We defined that lemma and 

we established new theorems with through this lemma. 
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